Contents

Preface

1. Basic thermodynamic and biochemical concepts
 - Fundamental thermodynamic concepts
 - States of matter
 - Pressure
 - Temperature
 - Volume, mass, and number
 - Properties of gases
 - The ideal gas laws
 - Gas mixtures
 - Kinetic energy of gases
 - Real gases
 - Derivation box 1.1 Relationship between the average velocity and pressure
 - Liquifying gases for low-temperature spectroscopy
 - Molecular basis for life
 - Cell membranes
 - Amino acids
 - Classification of amino acids by their side chains
 - DNA and RNA
 - Problems

Part 1: Thermodynamics and kinetics

2. First law of thermodynamics
 - Systems
 - State functions
 - First law of thermodynamics
 - Research direction: drug design I
 - Work
 - Specific heat
 - Internal energy for an ideal gas
 - Enthalpy
Dependence of specific heat on internal energy and enthalpy 34
Derivation box 2.1 State functions described using partial derivatives 34
Enthalpy changes of biochemical reactions 38
Research direction: global climate change 40
References 44
Problems 45

3 Second law of thermodynamics 46
Entropy 47
Entropy changes for reversible and irreversible processes 49
The second law of thermodynamics 51
Interpretation of entropy 52
Third law of thermodynamics 53
Gibbs energy 54
Relationship between the Gibbs energy and the equilibrium constant 55
Research direction: drug design II 56
Gibbs energy for an ideal gas 58
Using the Gibbs energy 59
Carnot cycle and hybrid cars 60
Derivation box 3.1 Entropy as a state function 63
Research direction: nitrogen fixation 66
References 69
Problems 69

4 Phase diagrams, mixtures, and chemical potential 71
Substances may exist in different phases 71
Phase diagrams and transitions 72
Chemical potential 73
Properties of lipids described using the chemical potential 74
Lipid and detergent formation into micelles and bilayers 75
Research direction: lipid rafts 77
Determination of micelle formation using surface tension 79
Mixtures 82
Raoult’s law 85
Osmosis 88
Research direction: protein crystallization 88
References 92
Problems 92

5 Equilibria and reactions involving protons 94
Gibbs energy minimum 94
Derivation box 5.1 Relationship between the Gibbs energy and equilibrium constant 95
Response of the equilibrium constant to condition changes 98
Acid–base equilibria 99
Protonation states of amino acid residues 105
Buffers
 Buffering in the cardiovascular system 108
Research direction: proton-coupled electron transfer and pathways 108
References 111
Problems 112

6 Oxidation/reduction reactions and bioenergetics 114
Oxidation/reduction reactions 114
Electrochemical cells 115
The Nernst equation 116
Midpoint potentials 117
Gibbs energy of formation and activity 120
Ionic strength 122
Adenosine triphosphate 123
Chemiosmotic hypothesis 124
Research direction: respiratory chain 126
Research direction: ATP synthase 128
References 131
Problems 132

7 Kinetics and enzymes 134
The rate of a chemical reaction 134
Parallel first-order reactions 137
Sequential first-order reactions 139
Second-order reactions 140
The order of a reaction 141
Reactions that approach equilibrium 142
Activation energy 143
Research direction: electron transfer I: energetics 144
Derivation box 7.1 Derivation of the Marcus relationship 146
Enzymes 147
 Enzymes lower the activation energy 148
 Enzyme mechanisms 150
Research direction: dynamics in enzyme mechanism 150
Michaelis–Menten mechanism 151
Lineweaver–Burk equation 155
Enzyme activity 155
Research direction: the RNA world 158
References 160
Problems 161

8 The Boltzmann distribution and statistical thermodynamics 163
Probability 163
Boltzmann distribution 165
Partition function 166
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Vibrational motion and infrared spectroscopy</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Simple harmonic oscillator: classical theory</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Potential energy for the simple harmonic oscillator</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Simple harmonic oscillator: quantum theory</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Derivation box 11.1 Solving Schrödinger’s equation for the simple harmonic oscillator</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Properties of the solutions</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Forbidden region</td>
<td>228</td>
</tr>
<tr>
<td></td>
<td>Transitions</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Vibrational spectra</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Research direction: hydrogenase</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>235</td>
</tr>
<tr>
<td>12</td>
<td>Atomic structure: hydrogen atom and multi-electron atoms</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Schrödinger’s equation for the hydrogen atom</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>Derivation box 12.1 Solving Schrödinger’s equation for the hydrogen atom</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>Separation of variables</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>Angular solution</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Radial solution</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Properties of the general solution</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>Angular momentum</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td>Orbitals</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>s Orbitals</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>p Orbitals</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>d Orbitals</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Transitions</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>Research direction: hydrogen economy</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>Spin</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Derivation box 12.2 Relativistic equations</td>
<td>258</td>
</tr>
<tr>
<td></td>
<td>Multi-electron atoms</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Empirical constants</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Self-consistent field theory (Hartree–Fock)</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>Helium atom</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>Spin–orbital coupling</td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>Periodic table</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>267</td>
</tr>
<tr>
<td>13</td>
<td>Chemical bonds and protein interactions</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Schrödinger’s equation for a hydrogen molecule</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>Valence bonds</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>The Hückel model</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>Interactions in proteins</td>
<td>276</td>
</tr>
</tbody>
</table>
Peptide bonds 278
Steric effects 278
Hydrogen bonds 279
Electrostatic interactions 280
Hydrophobic effects 280
Secondary structure 282
Determination of secondary structure using circular dichroism 284
Research direction: modeling protein structures and folding 284
References 289
Problems 289

14 Electronic transitions and optical spectroscopy 291
The nature of light 291
The Beer–Lambert law 293
Measuring absorption 294
Transitions 296
Derivation box 14.1 Relationship between the Einstein coefficient and electronic states 298
Lasers 300
Selection rules 301
The Franck–Condon principle 302
The relationship between emission and absorption spectra 303
The yield of fluorescence 305
Fluorescence resonance energy transfer 306
Measuring fluorescence 306
Phosphorescence 307
Research direction: probing energy transfer using two-dimensional optical spectroscopy 307
Research direction: single-molecule spectroscopy 310
Holay junctions 312
References 315
Problems 315

15 X-ray diffraction and extended X-ray absorption fine structure 317
Bragg’s law 319
Bravais lattices 320
Protein crystals 322
Diffraction from crystals 323
Derivation box 15.1 Phases of complex numbers 325
Phase determination 328
Molecular replacement 328
Isomorphous replacement 329
Anomalous dispersion 329
Model building 331
Experimental measurement of X-ray diffraction 332
Examples of protein structures 335
Research direction: nitrogenase 336
Extended X-ray absorption fine structure 339
References 342
Problems 342

16 Magnetic resonance 344
NMR 344
 Chemical shifts 347
 Spin–spin interactions 348
 Pulse techniques 349
 Two-dimensional NMR: nuclear Overhauser effect 351
 NMR spectra of amino acids 352
Research direction: development of new NMR techniques 352
 Determination of macromolecular structures 357
Research direction: spinal muscular atrophy 357
MRI 360
Electron spin resonance 362
 Hyperfine structure 365
 Electron nuclear double resonance 365
 Spin probes 366
Research direction: heme proteins 367
Research direction: ribonucleotide reductase 369
References and further reading 370
Problems 371

Part 3: Understanding biological systems using physical chemistry 373

17 Signal transduction 375
 Biochemical pathway for visual response 375
 Spectroscopic studies of rhodopsin 377
 Bacteriorhodopsin 378
 Structural studies 380
 Comparison of rhodopsins from different organisms 384
 Rhodopsin proteins in visual response 387
 References and further reading 387
 Problems 388

18 Membrane potentials, transporters, and channels 390
 Membrane potentials 390
 Energetics of transport across membranes 391
 Transporters 394
 Ion channels 397
 References and further reading 402
 Problems 403
CONTENTS

19 Molecular imaging 405
 Imaging in cells and bodies 405
 Green fluorescent protein 405
 Mechanism of chromophore formation 408
 Fluorescence resonance energy transfer 410
 Imaging of GFP in cells 412
 Imaging in organisms 414
 Radioactive decay 415
 PET 416
 Parkinson's disease 418
 References and further reading 419
 Problems 419

20 Photosynthesis 421
 Energy transfer and light-harvesting complexes 423
 Electron transfer, bacterial reaction centers, and photosystem I 425
 Water oxidation 430
 References and further reading 436
 Problems 437

Answers to problems 439
Index 488
Fundamental constants 493
Conversion factors for energy units 493
The periodic table 494